Copied to
clipboard

G = S32×C9order 324 = 22·34

Direct product of C9, S3 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S32×C9, (C3×S3)⋊C18, C3⋊S32C18, C31(S3×C18), (C3×C9)⋊15D6, C322(C2×C18), C33.3(C2×C6), (C32×C9)⋊1C22, (S3×C32).2C6, C32.12(S3×C6), (C3×S32).C3, (S3×C3×C9)⋊1C2, C3.5(C3×S32), (C9×C3⋊S3)⋊1C2, (C3×C3⋊S3).3C6, (C3×S3).4(C3×S3), SmallGroup(324,115)

Series: Derived Chief Lower central Upper central

C1C32 — S32×C9
C1C3C32C33C32×C9S3×C3×C9 — S32×C9
C32 — S32×C9
C1C9

Generators and relations for S32×C9
 G = < a,b,c,d,e | a9=b3=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 244 in 86 conjugacy classes, 30 normal (12 characteristic)
C1, C2, C3, C3, C3, C22, S3, S3, C6, C9, C9, C32, C32, C32, D6, C2×C6, C18, C3×S3, C3×S3, C3⋊S3, C3×C6, C3×C9, C3×C9, C33, C2×C18, S32, S3×C6, S3×C9, S3×C9, C3×C18, S3×C32, C3×C3⋊S3, C32×C9, S3×C18, C3×S32, S3×C3×C9, C9×C3⋊S3, S32×C9
Quotients: C1, C2, C3, C22, S3, C6, C9, D6, C2×C6, C18, C3×S3, C2×C18, S32, S3×C6, S3×C9, S3×C18, C3×S32, S32×C9

Smallest permutation representation of S32×C9
On 36 points
Generators in S36
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 7 4)(2 8 5)(3 9 6)(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)(28 31 34)(29 32 35)(30 33 36)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 19)(7 20)(8 21)(9 22)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)

G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,7,4),(2,8,5),(3,9,6),(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24),(28,31,34),(29,32,35),(30,33,36)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,19),(7,20),(8,21),(9,22),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36)]])

81 conjugacy classes

class 1 2A2B2C3A3B3C···3H3I3J3K6A6B6C6D6E···6J6K6L9A···9F9G···9R9S···9X18A···18L18M···18X18Y···18AD
order1222333···333366666···6669···99···99···918···1818···1818···18
size1339112···244433336···6991···12···24···43···36···69···9

81 irreducible representations

dim111111111222222444
type++++++
imageC1C2C2C3C6C6C9C18C18S3D6C3×S3S3×C6S3×C9S3×C18S32C3×S32S32×C9
kernelS32×C9S3×C3×C9C9×C3⋊S3C3×S32S3×C32C3×C3⋊S3S32C3×S3C3⋊S3S3×C9C3×C9C3×S3C32S3C3C9C3C1
# reps121242612622441212126

Matrix representation of S32×C9 in GL4(𝔽19) generated by

7000
0700
0050
0005
,
18100
18000
0010
0001
,
01800
18000
00180
00018
,
1000
0100
00110
0007
,
1000
0100
00016
0060
G:=sub<GL(4,GF(19))| [7,0,0,0,0,7,0,0,0,0,5,0,0,0,0,5],[18,18,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,18,0,0,18,0,0,0,0,0,18,0,0,0,0,18],[1,0,0,0,0,1,0,0,0,0,11,0,0,0,0,7],[1,0,0,0,0,1,0,0,0,0,0,6,0,0,16,0] >;

S32×C9 in GAP, Magma, Sage, TeX

S_3^2\times C_9
% in TeX

G:=Group("S3^2xC9");
// GroupNames label

G:=SmallGroup(324,115);
// by ID

G=gap.SmallGroup(324,115);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,68,1090,7781]);
// Polycyclic

G:=Group<a,b,c,d,e|a^9=b^3=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽